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The asymptotic behaviour of selfavoiding 
walks and returns on a lattice 

M F SYKES, A J GUTTMANNI, M*G WATTSS and P D ROBERTS5 
Wheatstone Physics Laboratory, University of London, King's College, UK 

MS received 24 August 1971 

Abstract. New data for the number of selfavoiding walks and selfavoiding returns to the 
origin on two and three dimensional lattices are presented and studied numerically by the 
ratio method. Estimates for the critical attrition and critical indices are given. For a 
loose-packed lattice the selfavoiding walk generating function appears to have a singularity 
on the negative real axis. This singularity is at the same distance from the origin as the 
physical singularity, and is found to be cusp-like with an exponent o f f  in two dimensions 
and 2 in three dimensions. This behaviour enables a close analogy to be drawn between the 
behaviour of the king model high temperature susceptibility and the walk generating 
function. 

1. Introduction 

Recently the derivation of extended series for the high temperature susceptibility of 
the Ising model in two and three dimensions has enabled a detailed theory of asymptotic 
behaviour to be developed (Sykes et al 1972a, 1972b to be referred to as I and 11). It is 
the purpose of the present paper to develop an analogous theory for selfavoiding walks ; 
to do this we have extended the data on the square, simple cubic and body-centred 
cubic lattices. 

A detailed introduction to the problem, and a lead into the literature, is given by 
Martin et a1 (1967). Interest centres on the generating functions for selfavoiding chains 
and rings defined by 

m 

C(x) = 1 cnxn co = 1 (chain-generating function) (1.1) 

V(x) = U,X" U,, = 1 (ring-generating function) (1.2) 

n = O  

m 

n = O  

where c, is the number of n step selfavoiding walks and U, the number of n step self- 
avoiding returns to the origin. These generating functions are analogous in many 
respects to the susceptibility and energy of the corresponding Ising model. 

For close-packed lattices data for C(x) on the triangular lattice through n = 17 and 
on the face-centred cubic through n = 12 are given by Martin et a1 (1967); slightly 
extended data on the rings through n = 18 and n = 14 respectively are given by 

t Now at Department of Mathematics, University of Newcastle, NSW, 2308, Australia. 
1 Now at United Kingdom Atomic Energy Authority, Winfrith, Dorset. 
Q Now at Atomic Weapons Research Establishment, Aldermaston, Berkshire. 

653 



654 M F Sykes, A J Guttmann, M G Watts and P D Roberts 

Sykes et a1 (1972~). In the light of recent developments we have re-examined the 
evidence and report on this briefly in $2. 

For loose-packed lattices data for C(x) through n = 18 on the square lattice are 
given by Hiley and Sykes (1961) and through n = 16 for the simple cubic lattice by 
Sykes (1963) ; again slightly extended data on the rings are given by Sykes et a1 (1972~). 
We have extended the data for C(x) on the square lattice a further six terms to n = 24, 
on the simple cubic lattice a further three terms to n = 19 and on the body-centred 
lattice a further six terms to n = 15. We use the new data to make a more detailed analysis 
in $ 3 .  We summarize the walks on loose-packed lattices in the Appendix. 

Throughout our treatment we shall assume a familiarity with I and I1 and only 
describe briefly the results of applying the same approach to the excluded volume 
problem. 

2. Close-packed lattices 

The elementary treatment supposes that near x = l/jL 

C(X) - A(l-px)-g-' .  (2.1) 

A detailed numerical analysis of this assumption is given by Martin et a1 (1967) and 
reference should be made to this paper for a general discussion of the evidence. The data 
are found to be reasonably consistent with the hypothesis 

g = 3 in two dimensions 

g = in three dimensions. 

The corresponding attrition parameters, which are lattice dependent, are there estimated 
as 

p = 4.1515 (triangular lattice) 

p = 10.035 (face-centred cubic lattice). 

To apply the more detailed theory of I and I1 we investigate the assumption that, more 
generally 

C(X) - (l-pX)-"l@(X)+Y(X) (2.3) 

where 0 and Y are regular in the disc 1x1 < l/p. Then the quantity 

(2.4) 

should, for large n, approach linearity against l /nz.  Following I1 we form a sequence of 
estimates by solving for p and 4: 

P n  = P (  l+$) 

using successive pairs of ratios. We illustrate the results for the triangular lattice in 
figure 1. The estimates for n > 12 are all very close together (within a few parts in a 
million) ; in fact they are slightly closer together than the corresponding estimates for 
the susceptibility. In contrast a smooth behaviour is less well defined and apparently 
only develops for slightly higher values of n (about 14 in place of 11 for the susceptibility) ; 
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Figure 1. Triangular lattice. Estimates for the attrition ( p )  obtained by solving pn=p(l  + (in2) 
using successive pairs of ratios. 

it seems that convergence is slower. The data are difficult to extrapolate more precisely ; 
the last estimate is within 6 parts in 100000 of the 1967 estimate. We conclude that the 
assumption (2.3) fits the data well, and that 

p = 4*1517+0~0001 (2.6) 

which represents no significant change. 
Since convergence is slower than for susceptibilities we would not expect the much 

shorter data for the face-centred cubic lattice to have reached the smooth region. 
We give the last six solutions to (2.5) in table 1. It will be seen that nevertheless the range 

Table 1. Successive solution of (2.5) for face-centred cubic lattice 

7 10.03306 
8 10.03453 
9 10.03447 
10 10.03454 
11 10.03468 
12 10.0348 1 

of variation is already quite small; the last entry is within 2 parts in 1OOOOO of the 
1967 estimate. We conclude that p is linear against l/n2 within narrow limits and 
estimate 

p = 10*0355f0~0010. (2.7) 
Our general inference for close-packed lattices is that, while convergence is some- 

what slower, the qualitative behaviour of C(x) closely resembles that of X(u) found in 
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I and 11. If the assumption (2.3) is correct, the estimates (2.6) and (2.7) are likely to be 
precise to within a few parts in 100000. 

3. Loose-packed lattices 

For loose-packed lattices the situation is complicated by the presence of a characteristic 
even-odd oscillation in the ratios ,U,,. We investigate the assumption that 

13.1) 

where the second term is included to account for the oscillatory behaviour. The 
introduction of a singularity at x = - l /p (corresponding to a notional antiferro- 
magnetic walk) is difficult to justify rigorously; one such must be present in the ring 
generating function since this is an even function of x. For the susceptibility it appears 
likely (Sykes 1961, Sykes and Fisher 1958) that the oscillation is caused by a singularity 
with exponent equal to the exponent characterizing the behaviour of the internal 
energy at this point. The internal energy is derived by differentiation of the free energy, 
and this latter is dependent on polygons (and other no-field graphs). For the polygons, 
differentiation results in contributions proportional to U ,  (Sykes 1961). By analogy we 
suppose that the second index in (3.1) may well be that of the ring generating function. 
Alternatively we observe that the successive coefficients for C(x) are usually calculated 
recursively from the number of dumb-bells, figure-eights and rings (Sykes 1961), and 
that any singularity in the ring generating function V(x) could impress itself on C(x). 
The argument is not rigorous since we have not proved that the singularity is not 
cancelled by the generating functions of dumb-bells and figure-eights. Without adjudi- 
cating on these somewhat tenuous arguments we investigate (3.1) numerically. 

C(x) - A( 1 - p x ) - R -  1 +A*(  1 + p x ) - h -  

We illustrate three approximations for the square lattice in figure 2.  

P" = ,U(l +$j (3.2) 

which, following I1 and by analogy, we still denote by P ( ~ F )  and regard as the first 

2.63921 

2,63901 

P I 

2 63881 

-. 

2 63861 
t- , A' 

*I 

I6 17 18 19 20 21 22 23 24 
n 

Figure 2. Square lattice Estimates for the attrltion ( p )  obtained from A. A the approxi- 
mation /3(1~); B the approximation /3(1~) with 0 = 1.833 and C with Q = 1 860 
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order ‘ferromagnetic’ approximation ; it takes no account of the oscillation except in 
so far as the successive solutions are obtained from alternate pairs of ratios. The other 
two approximations are of ‘antiferromagnetic’ type, p( l ~ ) ,  and correspond to 

These ignore the quadratic approach term of the first singularity but take account of 
the oscillation. From (3.1) and the arguments of I1 it follows that the oscillation should 
decline as l /ng-h where g and h are defined by (3.1), so that the index 0 in (3.3) is now 
that of initial ring closure (Hiley and Sykes 1961). We illustrate the results obtained by 
adopting the estimate of Martin et a1 (1967) of 8 = 1.833 and also 8 = 1.860 which 
latter value is more effective in smoothing the oscillation and is within l i% of the 
former. There are two points to be made: first we have investigated numerically 
numerous algebraic functions of type (3.1) and found that the true index is not always 
the one which gives the smoothest set of solutions but is always very close to it (Roberts 
1971). Second, the observed smoothness is only in the last four estimates; the previous 
four can be made smooth by adopting 0 = 1.87 but this does less well for the last four. 
Thus as the number of terms increases the index found in this way approaches the ring 
closure index within narrow limits. 

We conclude the data are quite consistent with all our hypotheses. We present in 
table 2 the last six solutions of the combined approximation P ( ~ F ,  1 ~ )  corresponding to 

Table 2. Successive solutions of (3.4) for square lattice 

19 -0.075189 -0.313711 2.638727 
20 -0.092443 -0.313122 2,638860 
21 -0.069912 -0.312436 2.638703 
22 -0.083188 -0.312035 2.638787 
23 -0.064622 -0.31 1530 2.638681 
24 -0.074143 -0.311272 2.638730 

(3.4) 

The chief difference from the corresponding results for the susceptibility is that [ now 
dominates and q is relatively small and ill defined. We estimate 

p = 2*6385f0*0001 (3.5) 
which is within reasonable agreement with Hiley and Sykes (1961) who give 
p = 2.6390-tO.0005 from 18 terms, and in precise agreement with Guttmann et a1 (1968) 
who give 11 = 2.6385k0.0001 from 18 terms. 

For the simple cubic lattice we illustrate in figure 3 the approximation P ( ~ F )  and 
also p ( 1 ~ )  for 8 = 1.9167 which corresponds to the ring closure index of Sykes et al 
(1967) and further 8 = 1.94 which is more effective in smoothing the oscillation. As in 
two dimensions the second index is only some 13% above the first and the same 
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Figure 3. Simple cubic lattice. Estimates for the attrition (p) obtained from: A. A' the 
approximation p ( 1 ~ ) ;  B the approximation p ( 1 ~ )  with 8 = 1.9167 and C with 0 = 1.94. 

observations apply. We regard the general trend as satisfactory and estimate 

p = 4.6835 f0.0005 (3.6) 

which is only 0.02% higher than the earlier estimates (Sykes 1963, Guttmann et a1 1968) 
based on 16 terms. 

The behaviour of the body-centred cubic lattice, for which we have derived 15 terms, 
is qualitatively the same. We give the last few solutions of the combined first order 
approximation using the initial ring closure index for both three dimensional lattices 
in table 3. For the body-centred cubic lattice we estimate 

p = 6.5295 00305. (3.7) 

Table3. Successive solutions of  IF, 1 ~ )  with 0 = 1.9167 for the simple cubic lattice and 
body -cen t red cubic lattice 

" v i P 

Simple cubic 14 -0,02315 -0.13870 4.68313 
15 -0.02100 -0,13858 4.68308 
16 -0,02680 -0,13825 4,68320 
17 -0,02472 - 0.1 3815 4,683 16 
18 -0.03072 -0,13786 4,68327 
19 -0.02864 -0,13776 4.68324 

Body-centred cubic 12 -0.00183 -0.12477 6.52892 
13 -0.00558 -0.12504 6.52915 
14 -0.00670 -0,12496 6,52915 
1.5 - O.OO820 - 0.1 2505 6.5292 1 

This result is also in good agreement with earlier estimates based on only 9 terms in 
the series. These were p = 6.54+0.01 by Fisher and Sykes (1959) and p 2: 6.527 by 
Guttmann et a1 (1968). As in two dimensions, the parameter i dominates while q is 
relatively small and ill defined. 
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While (3.1) appears sufficient to describe the data for the lattices we have examined, 
additional terms are required to account for the more complex behaviour of walks on 
the honeycomb and diamond lattices ; a similar complexity is found for the susceptibility 
(see paper I). 

4. Conclusions 

We have investigated the assumption that for a close-packed lattice the chain-generating 
function C(x) may be written, near x = l/p 

C(x) 'v ( 1 - p x )  - - 1 @(x) + Y (x) (4.1) 
where @ and Y are regular in the disc 1x1 < l/p. By a numerical study we have found the 
data consistent with this assumption; extended data are in close agreement with the 
values g = 3 in two dimensions (triangular lattice) and g = $ in three dimensions 
(face-centred cubic lattice). 

For a loose-packed lattice we have investigated the more general assumption 

C(X) - (1 -px)-g- '@(x) +( 1 + px)-h- '@*(x) + Y(x) (4.2) 
where @, @* and Y are regular in the disc 1x1 < l/p. We have suggested some theoretical 
reasons for identifying h with the critical index for rings. Again by numerical study we 
have found the data consistent with this assumption ; extended data are in close agreement 
with the values g = 3 and h = - 1; in two dimensions (square lattice) and g = $ and 
h = - 1; in three dimensions (simple cubic and body-centred cubic lattices). In other 
words we have found that the characteristic even-odd oscillation in the ratios for a 
loose-packed lattice declines to leading asymptotic order as n-', with 8 equal to the 
initial ring closure index, namely, 8 = 12 in two dimensions and 8 = lg in three 
dimensions. This is in complete analogy with the result for the Ising model, where the 
oscillations are found to decrease with index 8 = 23 in two dimensions and 8 = 2; in 
three dimensions (Sykes et a1 1972b). 

The detailed theory of the asymptotic behaviour of coefficients in high temperature 
series expansions for the king model finds a close parallel in that of selfavoiding walks. 
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Appendix. Selfavoiding walks 

n c, honeycomb c, square c, simple cubic c, body-centred 
lattice lattice lattice cubic lattice 

0 1  
1 3  
2 6  
3 12 

1 1 1 
4 6 8 
12 30 56 
36 150 392 
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i i  c, honeycomb c, square c, simple cubic e, body-centred 
lattice lattice lattice cubic lattice 

4 

6 
7 
8 
9 
I O  
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

3 

24 
48 
90 
174 
336 
648 
1218 
2328 
4416 
8388 
15780 
29892 
56268 
106200 
199350 
375504 
704304 
1323996 
2479692 
4654464 
87 102 12 
16328220 
30526374 
57161568 
106794084 
199788408 
372996450 
6972 17994 
1300954248 
2430053136 
4531816950 

100 
284 
780 
2172 
5916 
16268 
44 100 
120292 
324932 
88 1500 
2374444 
6416596 
17245332 
46466676 
124658732 
335116620 
897697164 
2408806028 
6444560484 
1726661 3812 
461 46397316 

726 
3534 
16926 
8 1390 
387966 
1853886 
8809878 
41934150 
198842742 
9439745 10 
4468911678 
21 175146054 
100121875974 
473730252102 
2237723684094 
I0576033219614 

2648 
17960 
120056 
804824 
5351720 
35652680 
236291 096 
1568049560 
10368669992 
68626647608 
453032542040 
2992783648424 

References 

Fisher M E and Sykes M F 1959 Phys. Rec. 114 45-58 
Guttmann A J, Ninham B W and Thompson C J 1968 Phys. Rev. 172 554-8 
Hiley B J and Sykes M F 1961 J .  chem. Phys. 34 1531-7 
Martin J L, Sykes M F and Hioe F T 1967 J .  chem. Phys. 46 3478-81 
Roberts P D 1971 PhD Thesis University of London 
Sykes M F 1961 J .  math. Phys. 2 52-62 
.- 1963 J .  chem. Phys. 39410-2 
Sykes M F and Fisher M E 1958 Phys. Rev. Lett. 1 321-2 
Sykes M F, Gaunt D S, Roberts P D and Wyles J A 1972a J .  Phys. A :  Gen. Phys. 5 624-39 
__ 1972b J .  Phys. A:  Gen. Phys. 5 64Cb52 
Sykes M F, McKenzie D S, Watts M G and Martin J L 1972c J .  Phys. A :  Gen. Phys. 5 661-6 


